

Fig. 2. In (a) the Li₂ZrF₆ structure type (Li₂NbOF₅) is given. In (b) the trirutile structure of the composition AB₂X₆. In both the structures, A corresponds to filled circles, and open circles are the B-atoms.

indicated by the curved arrows, and without disorder. To our knowledge, no such transformation has been reported for the compounds Li₂NbOF₅ and Li₂ZrF₆. However, α -Li₂SnF₆ of the Li₂ZrF₆ type has been found to transform to a structure of the trirutile type, designated β -Li₂SnF₆ at 510°C (4).

Another interesting transformation was reported recently (5, 6). At about 400°C , $\alpha\text{-Li}_2\text{GeF}_6$, of the trirutile type, transforms to $\beta\text{-Li}_2\text{GeF}_6$ which has the Na₂SiF₆ type structure (7). Figure 4 shows the Na₂SiF₆ structure projected along the *c*-axis, and Fig. 5 the trirutile structure in an analogous projection. The geometrical relation between these structures can be shown by considering the Na₂SiF₆ type. The cations in the octahedra drawn with heavy lines are at $z = \frac{1}{2}$, those in the lighter octahedra at z = 0. If the metal atoms at z = 0 in *m*-planes move

to $z=\frac{1}{2}$, and those at $z=\frac{1}{2}$ in *n*-planes to z=0, the trirutile structure is obtained. This involves half the cations passing through octahedral faces along half the *c*-axis; the anion lattice remains intact. If the A and B atoms keep their relative order during the transformation, the ordered Na₂SiF₆ structure type may, in the reverse way, be geometrically derived directly from the ordered trirutile type. That β -Li₂SnF₆ and β -Li₂GeF₆ are formed as ordered compounds, with, respectively, the trirutile and Na₂SiF₆ structures, indicates that the geometrical proposals described here may very well be correct mechanisms.

All these compounds have approximately the same (hexagonally close packed) anion arrangement. At very high pressures the preferred cation arrangement seems to be like that in the α-PbO₂

Fig.

structu genera (order analog